Regularization of Neural
نویسندگان
چکیده
Neural networks are exible tools for nonlinear function approximation and by expanding the network any relevant target function can be approximated 6]. The risk of overrtting on noisy data is of major concern in neural network design 2]. By using regularization, overrtting is reduced, thereby improving generalization ability on future data. In this contribution we present a scheme for estimation of regularization parameters using a simple validation set approach. Further work on empirical methods for optimization of neural networks models can be found in 10]. The objective neural network modelling is to establish an estimate of the nonlinear relation among two vector variables: the input x and the output y. The neural net is estimated (trained) from a dataset of related input-output examples. The neural network implements a nonlinear function described by the vector function f(x;w) where w is the m-dimensional vector of all network weights. For a standard two-layer feed-forward neural net, the q'th component of f is given by (see e.g., 5]):
منابع مشابه
Optimizing of Iron Bioleaching from a Contaminated Kaolin Clay by the Use of Artificial Neural Network
In this research, the amount of Iron removal by bioleaching of a kaolin sample with high iron impurity with Aspergillus niger was optimized. In order to study the effect of initial pH, sucrose and spore concentration on iron, oxalic acid and citric acid concentration, more than twenty experiments were performed. The resulted data were utilized to train, validate and test the two layer artificia...
متن کاملModeling of Compressive Strength of Metakaolin Based Geopolymers by The Use of Artificial Neural Network RESEARCH NOTE)
In order to study the effect of R2O/Al2O3 (where R=Na or K), SiO2/Al2O3, Na2O/K2O and H2O/R2O molar ratios on the compressive strength (CS) of Metakaolin base geopolymers, more than forty data were gathered from literature. To increase the number of data, some experiments were also designed. The resulted data were utilized to train and test the three layer artificial neural network (ANN). Bayes...
متن کاملForecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach
Nowadays 90% of the required water of Iran is secured with groundwater resources and forecasting of pollutants content in these resources is vital. Therefore, this research aimed to develop and employ the feedforward artificial neural network (ANN) to forecast the arsenic (As), lead (Pb), and zinc (Zn) concentration in groundwater resources of Asadabad plain. In this research, the ANN models we...
متن کاملPredictive Abilities of Bayesian Regularization and Levenberg–Marquardt Algorithms in Artificial Neural Networks: A Comparative Empirical Study on Social Data
The objective of this study is to compare the predictive ability of Bayesian regularization with Levenberg–Marquardt Artificial Neural Networks. To examine the best architecture of neural networks, the model was tested with one-, two-, three-, four-, and five-neuron architectures, respectively. MATLAB (2011a) was used for analyzing the Bayesian regularization and Levenberg–Marquardt learning al...
متن کاملA Mathematical Analysis of New L-curve to Estimate the Parameters of Regularization in TSVD Method
A new technique to find the optimization parameter in TSVD regularization method is based on a curve which is drawn against the residual norm [5]. Since the TSVD regularization is a method with discrete regularization parameter, then the above-mentioned curve is also discrete. In this paper we present a mathematical analysis of this curve, showing that the curve has L-shaped path very similar t...
متن کاملRegularization Parameter Selection for Faulty Neural Networks
Regularization techniques have attracted many researches in the past decades. Most focus on designing the regularization term, and few on the optimal regularization parameter selection, especially for faulty neural networks. As is known that in the real world, the node faults often inevitably take place, which would lead to many faulty network patterns. If employing the conventional method, i.e...
متن کامل